M1.		(a)	 A / dark band is mainly due to myosin filaments; H zone only <u>myosin</u> filaments; darker band has both types of filament; light band has only actin filaments; 	2 max	
		(ii)	H zone narrows; light band narrows; outer darker regions of A / dark band widen;	2 max	
	(b)	(i)	breaks down ATP yielding energy; used to form / break actomyosin bridges;	2	
		(ii)	<u>A and B</u> tropomyosin covers binding site on actin; no cross bridges formed / ATPase activity on <u>myosin</u> head reduced;	2	
			<u>B</u> and C calcium ions remove tropomyosin; binding / calcium ions increase ATPase activity;		[10]
M2.		(a)	(i) Decreases; Accept any word that means a decrease e.g. shorter / parrower /		

M2.	(a)	(1)	 Decreases; Accept any word that means a decrease e.g. shorter / narrower / 				
			smaller etc	1			
	(i	i) N	othing / stays the same length / does not change;	1			
	(b) 1	. т	wo marks for correct answer of 29545-30455; Correct answer = 2 marks outright. Range allows for a 1mm error in measuring				
	2		ne mark for incorrect answers in which candidate clearly divides neasured width by actual width; Ignore rounding up				
				2			

Attachment / cross bridges between actin and myosin; Accept the role of ADP in attachment

- 'Power stroke' / movement of myosin heads / pulling of actin;
 Not just 'filaments slide' as given in the question stem
- 3. Detachment of myosin heads;
- 4. Myosin heads move back/to original position / 'recovery stroke'

[7]

3 max

1

2

4

2

M3. (a) **W** = myosin **X** = actin;

- (b) myofibril is <u>contracting</u> in Figure 3 / <u>relaxing</u> in Figure 2; movement of actin fibres between myosin fibres;
- (c) interact with/move/touch tropomyosin; (allow troponin as alternative)

to reveal binding sites on actin; (not active sites)

allowing myosin (heads) to bind/touch actin / actinomyosin formed; activate ATPase / energy released from ATP;

[7]

M4.

(a)

(i) Contains more/large amount of succinic dehydrogenase; Accept "the enzyme" since only one being discussed

(Slow fibres) have lots of mitochondria/(slow fibres) respire aerobically;

(ii) Near edge/outside;

Short distance for diffusion of oxygen/Allows rapid diffusion/more diffusion of oxygen; Ignore glucose

Accept carbon dioxide

Oxygen used by mitochondria/electron transfer system in mitochondria; Accept effect of carbon dioxide on cell e.g. carbon dioxide changes pH/carbon dioxide affects enzymes

3

(b) (i) Measure with graticule/eyepiece scale;

Calibrate against something of known size:

OR

M5.

(b)

(c)

	OR		
	Estimate/measure field diameter with a scale; Estimate number of fibres to cover diameter; Q Last point could be a calibrated slide/haemocytometer/red blood cell or reasonable alternative Accept		
	Mount on ruler/haemocytometer/graph paper; use this to measure size; Note position of ruler must be specified and correct	2	
(ii)	Equivalent measurements taken;		
	At random to avoid bias/avoid choice of particular fibres;		
	Large number to be representative/minimise effect of extremes/of anomalies;		
	As a stained slide is provided reject references to safety. Ignore reliable		
		2 max	[9]
(a)	(i) $\mathbf{W} = \operatorname{actin};$	1	
(ii)	X = myosin;	1	
In	Fig 2, only actin / thin filaments present; Fig 3, actin / thin filaments and myosin / thick filaments present; tin /thin filaments have moved into myosin / thick filaments;	2 max	
(E Ca Ca	 <u>vdrolysis/breakdown of</u> ATP provides energy; nergy) for power stroke / breakage of actin-myosin cross bridges; alcium ions activate ATPase; alcium ions cause tropomyosin molecules to move / expose yosin-binding sites on actin; Q Do not allow reference to ATP <u>making</u> energy. As calcium ions is given in the question, allow references to 'calcium' (i.e. without ions in points 3 and 4. 		
		4	101

[8]

M6.	(a)	 (i) H band not visible/reduced / little/no thick filament/myosin only region / ends of thin filaments/actin close together; I band not visible/reduced / little/no thin filament/actin only region; A band occupies nearly all sarcomere / thick filament/myosin close to Z line; Large zone of thick-thin overlap; 			
	(ii)	<i>Calcium ions:</i> Bind to troponin; Remove blocking action of tropomyosin / expose myosin binding sites;			
		ATP: Allows myosin to detach from actin / to break cross bridge; <i>[allow attach and detach]</i> Releases energy to recock/swivel/activate myosin head / drive power stroke;	max 3		
(b)	(i)	Depolarisation of axon membrane/influx of Na ⁺ <u>establishes local</u> <u>currents;</u> Change permeability to Na ⁺ /open Na ⁺ gates of <u>adjoining region;</u> <u>Adjoining region</u> depolarises / influx of Na ⁺ ; This process repeated along axon / self propagation; Correct reference to/description of saltatory conduction;	max 3		
	(ii)	Depolarisation of (presynaptic) membrane; Ca ²⁺ channels open / increased permeability to Ca ²⁺ ; Influx of Ca ²⁺ ; Vesicles move towards presynaptic membrane; Vesicles fuse with presynaptic membrane; [<i>If ions mentioned once assume candidate is referring to ions throughout; if no mention of ions penalise once only</i>]	max 3		
(c)	(i)	 Correct axes labelled, correct orientation, linear scale; Key points (100%, 90% and 50%) plotted correctly; Plots joined by straight lines; [allow reasonable hand-drawn straight lines] 	3		
	(ii)	<u>Fast fibres used (</u> in explosive exercise); [allow reverse for slow fibres]	1		

[15]

M7.		 (a) calcium ions; bind to/displace tropomysin; <i>(allow troponin)</i> reveal binding site on actin; myosin binds to exposed sites on actin/actomyosin formed/ cross bridges form between actin and myosin; activates ATPase; 					3 n	ax		
	(b)	distance single a using 1 ATP; 15 ATP;	actin filame	ent moves divi	ded by dis	tance moved		2		
	(c)	 respiration stops; no ATP produced; ATP required for separation of actin and myosin/cross bridges; 					2 m	2 max [7]		
M8.		a) (i) A band	;					1		
		(ii) H zone and	d <i>I</i> band;					1		
	(b) filaments in I / thin filaments / actin filaments slide in between myosin / thick filament; thin filaments enter H zone / meet in middle of A band / pull Z lines closer;							2		
	(c)	correct answer: OR relaxed sarc		mm ;; gth = <u>48</u> / = 3	μm ;	= 2 marks = 1 mark	2 n	ax		
	(d)	(i) <u>In table</u> :								
		low	1	high						
		low	,	high						

(1 mark per row;;;)

high

(ii) 1

low

- overall rate of contraction limited by rate of ATP-splitting; ATPase splits ATP / hydrolyses ATP / converts ATP to ADP 2 (+ phosphate);
- 3 ATP-splitting provides energy for any TWO from myosin-actin interaction; myosin head movement / actin to move relative to myosin; to 'cock' myosin head;

4 max

3

(iii) lactate = product of anaerobic respiration;

type 1 has higher activity of glycolytic enzymes / has lower activity of Krebs cycle enzymes / has fewer mitochondria;

[15]

2

M9. (a) 1. e.m. gives high resolution;

- 2. due to short wavelength of electrons;
- 3. antibodies attach specifically to target proteins;
- 4. gold particles are electron dense;
- 5. electrons must pass through a vacuum;
- 6. material must be dead / fixed for e.m.;
- 7. cross-bridge cycling requires living cells / metabolism / named aspect-e.g. ATP synthesis;
- (b) 1. Ca^{2+} removes blocking molecules / uncovers binding site on actin;
 - 2. correct references to Ca²⁺ binding to troponin / moving tropomyosin;
 - 3. allows myosin heads to attach to actin filaments;
 - 4. allows sliding of the actin and myosin filaments;
 - 5. binding of ATP causes myosin (head) to detach (from actin);
 - 6. (hydrolysis of) ATP releases energy;
 - 7. which changes the configuration / cocking of the myosin head;

5 max

[10]

5 max

PMT